Distributed nonlinear control of diffusion–reaction processes
نویسندگان
چکیده
In this work, we focus on distributed control of quasi-linear parabolic partial differential equations (PDEs) and address the problem of enforcing a prespecified spatio-temporal behaviour in the closed-loop system using nonlinear feedback control and a sufficiently large number of actuators and sensors. Under the assumption that the desired spatio-temporal behaviour is described by a ‘target parabolic PDE’, we use a combination of Galerkin’s method and nonlinear control techniques to design nonlinear state and static output feedback controllers to address this problem. We use examples of diffusion–reaction processes to demonstrate the formulation of the control problem and the effectiveness of our systematic approach to creating prespecified spatio-temporal behaviour. Using these illustrative examples, we demonstrate that both (a) a sufficiently large number of actuators/sensors, and (b) nonlinear control laws are needed to achieve this goal. Copyright # 2004 John Wiley & Sons, Ltd.
منابع مشابه
Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملNumerical Study on the Reaction Cum Diffusion Process in a Spherical Biocatalyst
In chemical engineering, several processes are represented by singular boundary value problems. In general, classical numerical methods fail to produce good approximations for the singular boundary value problems. In this paper, Chebyshev finite difference (ChFD) method and DTM-Pad´e method, which is a combination of differential transform method (DTM) and Pad´e approximant, are applied for sol...
متن کاملReal-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.
Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time opt...
متن کاملAN ANALYTICAL SOLUTION FOR DIFFUSION AND NONLINEAR UPTAKE OF OXYGEN IN THE RETINA
A simple mathematical model of steady state oxygen distribution subject to diffusive transport and non- linear uptake in a retinal cylinder has been developed. The approximate analytical solution to a reaction- diffusion equation are obtained by using series expansions. The computational results for the scaled variables are presented through graphs. The effect of the important parameters (1) d...
متن کاملPredictive control of transport-reaction processes
This work focuses on the development of computationally efficient predictive control algorithms for nonlinear parabolic and hyperbolic PDEs with state and control constraints arising in the context of transport-reaction processes. We first consider a diffusion-reaction process described by a nonlinear parabolic PDE and address the problem of stabilization of an unstable steady-state subject to ...
متن کامل